ARTICLES AND ESSAYS

“That Which Surpasses
All Understanding”:
The Limitations of
Human Thought

Mark J. Nielsen

One generation passeth away, and another generation cometh: but the
earth abideth for ever. The sun also ariseth, and the sun goeth down,
and hasteth to his place where he arose. The wind goeth toward the
south, and turneth about unto the north; it whirleth about continually,
and the wind returneth again according to his circuits. All the rivers
run into the sea; yet the sea is not full; unto the place from whence the
rivers come, thither they return again. All things are full of labour;
man cannot utter it: the eye is not satisfied with seeing, nor the ear
filled with hearing.—Ecclesiastes 1:4-8

I remember those verses striking a powerful chord within me
when I read them on a bright autumn day in 1980. I was then in
the first few months of my LDS mission in central Virginia. But
reading those words took my mind and emotions back to the
desert mountains of western Utah earlier that year. A friend and I
had taken a quick camping trip to collect fossils in that remote
area; and something in the desert sun, the bare exposure of earth,
and the surrounding evidence of unimaginably ancient life pro-
duced a feeling so strong that I recognized it immediately when I
later stumbled on that passage of scripture. I couldn’t then put my
finger on the exact meaning of the emotion—something about the
smallness of our place in the universe and our inability to under-
stand it all. It was as powerful as any religious feeling I had ever
had, and its duplication at reading the opening of Ecclesiastes
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nearly brought me to tears. I read the remainder of the book ea-
gerly, naively hoping to find its resolution.

That same yearning sense of inadequacy returned to me pow-
erfully again several years later on another bright autumn after-
noon. This time I was a graduate student pursuing my doctorate
in mathematics at the University of Washington in Seattle. I was at
the point in my degree program where only the dissertation re-
search remained, so my afternoons were usually spent sitting at
my desk scribbling on scratch paper and looking for some signifi-
cant idea to break. That afternoon I chose to leave my desk and in-
stead enjoy the sunshine outside. Taking my scratch pad and pen-
cil with me, I walked to a quiet area of campus and settled in to
work. My research project in geometry involved a technical ques-
tion about tilings—the filling up of space by geometric shapes. My
scratch pads would fill with patterns of tiles and formulae at-
tempting to explain their properties. The emotion I've been try-
ing to describe hit me that day as my eyes changed focus from the
pad in my hands to the leaf-tiled ground underneath me. Despite
my supposed sophistication in mathematical reasoning, I was
only toying with docile patterns. All around me lay complexity I
could never capture in any formula. I picked up a single colored
leaf, gazing at the intricate veining on its face, and the feeling
deepened. My usual pride in thinking of mathematics as a search
for pure and ultimate truth faltered as I realized that the patterns
I studied were the faintest shadows of an indescribable reality.

That day the way I looked at mathematics changed, and a real
interest in the relationship between my faith and my scholarship
began. My research interests have remained in geometry, but I
have been fascinated by the philosophy inspired and informed by
modern mathematics. I've been particularly impressed that some
mathematics can touch in me the same chord that Ecclesiastes
strikes. In fact, there is a good deal of interesting mathematics
that relates directly to those same limits on human understand-
ing. My musings begin with two cautionary notes:

1. What I say here will involve some speculation, both from a
theological and a mathematical viewpoint. However, what I say is
consistent with current knowledge in mathematics—that is, it is at
least within the realm of possibility as far as we presently know. I
believe it is similarly consistent with Latter-day Saint doctrine;
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while it may be speculative, it contains nothing contradictory to
standard Church teachings.

2. The mathematics necessary for this exposition is surpris-
ingly accessible in its general ideas, but there will be some termi-
nology and concepts with which non-mathematicians will not be
familiar. Please be patient, and rest assured that we won’t have to
deal with any actual equation-chasing or number-crunching.
What is described here is more meta-mathematics than mathe-
matics itself, not too difficult for a careful reader to follow.

We will return to the theological implications eventually. But
first, I offer a (reasonably) quick introduction to some back-
ground concepts we’ll need.

Historical Background

To understand what mathematics says about the limits of hu-
man reasoning, it is nearly essential to understand how it is that
mathematics even came to address such topics.

Numerical calculations were done by several cultures as early
as before 3000 B.C. But it was only when the Greeks introduced
the philosophical notion of proof in about 600 B.C. that we had
true mathematics. For however one chooses to define mathemat-
ics (a notoriously difficult task), the use of deductive reasoning to
draw conclusions from a set of assumptions is at its heart. Thales
(624-548 B.C.) supposedly wrote the first proofs; and by Euclid’s
time (about 300 B.C.), the Greeks had evolved the axiomatic
method, a formalization of the deductive process in which a small
set of assumptions (axioms) is set forth initially and then a super-
structure of proven facts (theorems) is built up from that founda-
tion. Most of us know Euclid’s name from its association with ge-
ometry. But the Elements (the work for which he is primarily
known) is most notable for its remarkable success in its use of the
axiomatic method.

The success of Euclid’s Elements helped to solidify this
method as the way to do mathematics. Precision in stating and
tracking assumptions became the gold standard by which mathe-
matical works are judged. Modern mathematics has taken the axi-
omatic method to new heights of formality, but the method re-
mains the same: Begin by stating your axioms, then work carefully
within the laws of logic to prove the consequences of those as-
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sumptions. So fundamental is the axiomatic method to the disci-
pline of mathematics that, just as the sciences are distinguished
by their use of the scientific method, one could characterize
mathematics as the use of the axiomatic method.

The growth of mathematical understanding in the 2,300 years
since Euclid has included long periods of stagnation, false starts,
and even regression. There have also been swings in perceptions
of the degree to which mathematics can accurately tell us about
reality. The Pythagoreans (a semi-religious cult founded by Py-
thagoras in the sixth century B.C.) believed in the creed that “all is
number.” They believed that literally all of observable reality
could be explained by the properties of the natural numbers (1, 2,
3, .. .) and their ratios. However, medieval scientists developed
new methods of empirical observation more quickly than mathe-
matical principles to explain those observations were advanced.
As a result, faith that the universe could be described mathemati-
cally gave way to fear that its workings might be undiscoverable to
the human mind. And while the tool of algebra that emerged in
the thirteenth and fourteenth centuries A.D. was put to impressive
use, its applications were limited in scope. The hope of answering
big questions through mathematical reasoning would reemerge
only after the Enlightenment.

The invention of calculus in the late seventeenth century
marks a turning point, not just in mathematics, but also in human
intellectual progress. A century before Newton, the prevailing
worldview was laced with superstition. Humans observed a uni-
verse whose order remained essentially mysterious to them. But
the generations following Newton, with Principia in hand, saw a
clockwork universe operating according to rules that were de-
scribable in mathematical terms. Once again, mathematicians
worked with the exuberant hope of a complete mathematical de-
scription of everything. The train of deduction the Greeks had
set in motion was back on track and running with a full head of
steam.

But the train had gotten a bit ahead of its own engine. Much
of the voluminous work done by the great mathematicians of the
eighteenth century was lacking in the rigor usually associated with
the axiomatic method. It was as if the mathematics community
was impatient with the slow development of rigorous methods
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and could not be held back from exploring the exciting new vistas
opened by the calculus. The work of justification could be done
after the adrenaline rush.

That time came in the latter half of the nineteenth century. But
as usually happens, the work of justification brought many difficul-
ties and generated more questions than were actually answered. As
early as the middle of the nineteenth century came indications that
the tracks on which our mathematical train was traveling were not
headed toward a complete description of the physical universe.
Mathematicians generated non-Euclidean geometries, complete
with bizarre and counterintuitive theorems, but with an internal
logic as mathematically consistent as Euclid’s revered Elements.
Mathematicians realized that the axiomatic method could be ap-
plied to many different sets of axioms, giving rise to many different
mathematical universes, all of which were internally consistent, and
none of which could claim to be a perfect model of physical reality.
The discipline of mathematics began to chart a more independent
course aimed toward abstraction rather than analytical modeling
of physical phenomena.

Infinity Rears Its Head

And then there was the problematic concept of infinity. It
runs all through calculus, as any freshman calculus student today
can tell you. But because the details of calculus’s development had
been postponed, the exact nature of the “infinitesimal” numbers
it used had not been dealt with. It was not until the late nineteenth
century (two hundred years after Newton!) that the German
mathematician Karl Weierstrass finally provided calculus with a
rigorous base and did so without resorting to a new mathematics
of infinity. But the suspicion remained that infinity would need to
be conquered.

In 1874 Georg Cantor published a paper announcing the be-
ginning of the battle for infinity. The first startling conclusion
from this paper was that there are different “sizes” of infinities, an
idea that remains as counterintuitive today as it was when Cantor
first announced it.! The basic idea is this: the “sizes” (cardinal-
ities) of two sets are compared by considering one-to-one corre-
spondences between the sets. If set X can be put into one-to-one
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correspondence with a part of set Y, then we say that the cardinal-
ity of Y is at least as great as that of X—thatis, |Y| > |X]. (Here I
use the symbol |X| to denote the cardinal number of set X.) This
device certainly works for finite cardinal numbers and, in fact, is
the way we intuitively learn to think of numbers as children: 3 is
less than 7 because we can associate a set of three objects in a
one-to-one way with only part of a set of seven objects.

Cantor’s breakthrough was to apply this same simple princi-
ple to infinite sets: If X and Y are sets with infinitely many ele-
ments each, we may still compare the sizes of X and Y by asking if
X can be put into one-to-one correspondence with part of Y. If this
is possible, then we can still write |Y| > |X], justas we do in the fi-
nite case. If both |Y| > |X]| and |X]| > |Y]| are true (that is, if X
can be put into one-to-one correspondence with part of Y and Y
can be put into one-to-one correspondence with part of X), then
we conclude that |Y| = |X|—the sets have equal cardinality.2
However, if |Y| > |X]| holds true, but |X| > |Y| is not true, then
we conclude |Y]| > |X]. The set Y is strictly larger (of greater car-
dinality) than X. Cantor managed to show that |R| >|N| where R
is the set of real numbers and N= {1, 2, 3, .. .} is the set of natural
numbers. The set of real numbers R includes all numbers most of
us ever think about—all those that can be written in decimal form,
even if the decimal expansion never ends. The natural numbers
are obviously in one-to-one correspondence with part of the real
numbers; they are part of the real numbers, after all. But Cantor
proved that there can be no one-to-one correspondence between
the real numbers and any set of natural numbers, so |[R| > |N]J.
Both sets are infinite, but they are not of equal cardinality.

Mathematicians use the symbol N, (pronounced “aleph
naught”—aleph is the first character in the Hebrew alphabet) to
denote |N|, the cardinal number of the set N={1,2,3,...}. Aset
whose cardinal number is N, is said to be countable, since putting
a set in exact one-to-one correspondence with {1,2, 3, ... } canbe
thought of as “counting” that set. But according to Cantor’s work,
there are cardinal numbers larger than N,. In fact, he showed that
there are infinitely many infinite cardinal numbers and that there
is no largest cardinal number. Any set (such as R) whose cardinal
number is larger than N, is said to be uncountable. Informally,
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countable sets are “small” infinite sets—much smaller than un-
countable sets.

Types of Numbers

A second major implication of Cantor’s paper is a strong
theme running through modern mathematics—that most num-
bers are very strange. To understand this idea, we first need to set
out some different classes of numbers. Mathematicians like to
classify numbers according to the types of equations for which
they might be solutions. Although this system may seem odd at
first, it is supported by centuries of experience. And it does make
sense, for even informally we tend to think of numbers as solu-
tions to equations. If I were to ask you what 2/3 is, you might re-
spond that it is the result of the quantity 2 being divided into 3
equal pieces: In other words, it is a quantity x, 3 of which would
equal 2—a solution to the algebraic equation 3x = 2.

Now equations like this one, of the form ax = b where a and b
are integers, are called linear equations. Their solutions (the frac-
tions b/a) are called rational numbers. Numbers that are not ra-
tional—those that cannot be written as fractions of integers—are
called, of course, irrational. Despite the sinister-sounding name,
many irrational numbers are actually quite familiar to us. For in-
stance, V2 is irrational. But while V2 may not be the solution to a
linear equation, it is the solution to an only slightly more complex
equation, namely x* = 2. This simple equation gives us a concrete
way to think of V2; so despite being irrational, it is still fairly under-
standable.

Generally, a number x is said to be an algebraic number if it is
the solution to a polynomial equation @, x" +a, x"! + ... + axx® + a;x
= b where n is some positive integer and a,,, a,, ,, ..., Gy, a,, and b are
all integers. So V2, despite being irrational, is definitely algebraic.
Numbers that are not algebraic are called transcendental. You
might be more familiar with the rational/irrational split of real
numbers than with the algebraic/transcendental split. But in
terms of characterizing which numbers are understandable and
which are not, the latter does a much better job. (Again, because
we understand numbers in terms of equations, transcendental
numbers are not solutions to nice equations, so in a very real
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sense, we have no fundamental way to grasp them.) You probably
can’t name any transcendental numbers other than a very few fa-
mous examples like the number 7. (Some readers may also be fa-
miliar with the number e). It isn’t that you don’t know enough
math to know more transcendentals; it’s just that most transcend-
entals are so bizarre in their makeup as to be beyond human de-
scription.

Now, back to Cantor. What Cantor’s results proved is that the
“nice” algebraic numbers, while infinite in cardinality, form a
smaller infinity than the “messy” transcendental numbers. In
fact, the algebraic numbers are countable while the transcenden-
tal numbers are uncountable. This difference is great enough
that, if you choose a truly random real number, the probability
that it will be algebraic is zero. Oddly (and disturbingly to Can-
tor’s contemporaries), Cantor accomplished this proof without
giving any way of actually generating transcendental numbers. In
effect, his conclusion means that almost all real numbers are too
strange for us to “see.”

Twentieth-century mathematics gave us another division of
numbers into two classes—a division that is even more fundamen-
tal to the question of what it means to “understand” a number.
The ideas came from the theory of computation—a mathematical
exploration of what computing machines (represented in this
case simply as sets of rules for manipulating inputs into outputs)
can and cannot do. The groundwork of this theory was laid even
before the development of electronic digital computers. There
are several abstract models of computing machines, but the most
widely accepted model is called a Turing machine® (TM). A TM
can best be understood as a mathematical model for an algorith-
mic process. Any computer running any program, and even
human decision-making processes, can (in theory) be modeled by
aTM.

We say that a number x is computable if there exists a TM that
can output x to any decimal accuracy we wish. Clearly any rational
number is computable, since we can output the decimal expan-
sion of a/b by the simple algorithmic process of long division. In
fact, you probably won’t have too much trouble believing that all
algebraic numbers are computable (i.e., the polynomial equation
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that defines an algebraic number can be turned into a method for
generating its decimal expansion). But the class of computable
numbers is even bigger than the set of algebraic numbers since
many transcendental numbers are also computable. For instance,
the most famous transcendental number, 7, can be computed us-
ing the following striking fact from calculus:

T=4-4/3+4/5-4/7+4/9-4/11 +4/13-4/15+4/17-4/19 + . . .

This does not mean we could ever write down the entire deci-
mal expansion of ©. We certainly cannot do that, for we know that
it continues forever with no repetition or apparent pattern. But if
you want to know the three-millionth digit* after the decimal
point in T, it could be computed by this formula.®> Since any
method by which we choose to create a decimal number could be
modeled by a TM, the computable numbers are the only numbers
we can ever hope to “name” or write down. By definition, you can
never write down a non-computable number.

But, as you may have already guessed, most real numbers are
non-computable. In fact, the set of all TMs turns out to be a
countable set, according to an argument we need not go into
here. But the set of computable numbers has cardinality no big-
ger than the set of TMs, since there is an obvious one-to-one cor-
respondence between the computable numbers and a collection
of TMs. So, since the real numbers are uncountable and the com-
putable numbers are just a puny countable part of all real num-
bers, in a very exact way we can say that “almost all” real numbers
are uncomputable, and thus beyond our comprehension.

The Law of Mathematical Unapproachability

The second discovery from Cantor’s famous paper—that most
real numbers are strange—is a precursor to a broad theme in mod-
ern mathematics, which I call the Law of Mathematical Unap-
proachability. It can be simply stated as: “Most objects in the uni-
verse of mathematics are too wild for humans to describe.” What
is the “universe of mathematics”? Most mathematicians inher-
ently believe that there is such a thing,6 though they would be
hard pressed to describe it to you.” But this universe of mathemat-
ics is as much a place to a mathematician as any physical location
you’ve ever visited, even though mathematicians “go there” only
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mentally through their work. But though it may be only a work of
the mind, we think of it as real nonetheless. In that universe one
can find the never-ending river of real numbers with the integers
scattered uniformly along it, the perfect plane of Euclid, many
oceans of functions, and the mountains of infinities that build
forever on themselves.

But now consider that universe in the light of the Law of
Mathematical Unapproachability. While I may visit the mathe-
matical universe and tinker with a few of the pebbles I find there,
most of its substance will be invisible to me. (Invisible, not unde-
tectable. I know the non-computable numbers exist. I simply can’t
“see” them.) The objects mathematicians love to explore are, in
fact, for the most part, not within their reach.8

The predominance of the transcendental numbers (and its
later extension to non-computable numbers) was merely the first
proved instance of the Law of Mathematical Unapproachability.
Among its many other known occurrences are the following:

- Most continuous functions are hopelessly non-differentiable. This
is calculus-speak for saying that most functions have graphs that
are indescribably crinkly. In other words, our calculus applies in
only a tiny corner of the universe of functions. Yet we study calcu-
lus because we can say something about that tiny corner, whereas
we have only a few strained examples of what lies outside it.

- Most two-dimensional shapes are fractal, exhibiting infinitely
complex behavior viewed at any scale. Traditional plane geome-
try says little about these objects, and the relatively new field of
fractal geometry barely scratches the surface.

- Most mathematical sets cannot be described by any TM, even
though sets are, in many ways, the most fundamental objects in
mathematics. This limitation puts most of the objects that make
up the foundation of mathematics beyond the reach of TMs—pre-
sumably, even those within our own skulls.

These instances of the Law of Mathematical Unapproachabil-
ity are interesting, but they are of limited use in determining lim-
its to human thought. After all, for the most part, they simply say
that we can prove the existence of objects with complexity too
great for human description. But note those important words:
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“we can prove . . .” One could argue that, to a certain degree, we
do understand non-computable numbers. We can prove they exist.
We just can’t write one down. The above items give us tasks we
cannot perform but not questions we cannot answer. However,
there are questions we cannot answer. Their existence was guaran-
teed in one of the most famous mathematical/philosophical de-
velopments of the twentieth century: Godel’s “Incompleteness
Theorems.”

Godel’s Theorems: Mathematics Discovers Its Limitations

In 1931, Kurt Godel published his now-famous theorems on
axiom systems. The exact statements of Godel’s theorems are
quite technical, but it is possible to lay out the main ideas in sim-
ple terms. Recall that an axiom is an assumption—something we
agree to accept as true without proof. An axiom system is a set of
such assumptions from which we hope to derive a set of useful
theorems. An axiom system is said to be inconsistent if it is possi-
ble to prove contradictory statements from its axioms—clearly
something we want to avoid. If the axioms have no such built-in
contradictions, then we say the axiom system is consistent.

Now axiom systems are somewhat stuffy and hard to think
about, so let’s switch over to thinking about computing machines.
There’s actually an easy correspondence between an axiom system
and a computing machine. Imagine loading your set of axioms into
a machine’s memory, programming it to use correct logical infer-
ence, and then setting it to the task of outputting a list of all possi-
ble theorems that can be proved from those axioms.” If the axioms
are consistent, the machine will never output two contradictory
statements, so we can consider the machine to also be consistent.

In the early twentieth century, there were high hopes that all
of mathematics (and perhaps all of the sciences as well) would
eventually be axiomatized. If that happened, and if this hypotheti-
cal computing machine were constructed to work with those axi-
oms, there would be no more need for mathematicians. If you had
a mathematical question, you’d simply ask UMTG (the Universal
Math Theorem Generator). But then why stop there? If the sci-
ences are also axiomatized (and human behavior and aesthetics
along with them) we could build UEO (the Universal Everything
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Oracle) that could predict all events, write the elusive perfect
novel, and in short, leave nothing for us to do.10

Fortunately for all of us, this will never happen, for Godel’s
first theorem says that no such machine is possible. In fact, no
consistent machine can generate all theorems in just the limited
area of arithmetic of the natural numbers. No matter what axioms
you build into your machine, either it will be inconsistent or there
will be correct statements about arithmetic that the machine can
never derive.

The idea behind Go6del’s proof is surprisingly simple. Imagine
that we have a set of axioms (call it A), and from it we build a ma-
chine M(A) that we claim is a UMTG. Goédel can prove us wrong
by constructing a true statement in arithmetic that our machine
will never prove. He does this by asking to see how our machine
works (that is, he asks to see our axioms A); and from the answer,
he produces an arithmetic statement S that (in a complicated but
very exact way) encodes the sentence “The machine M(A) will
never prove this statement to be true.” Now, think about that
sentence for a minute:

- If our machine proves Godel’s arithmetic statement S, the sen-
tence becomes false, which because of the encoding, makes state-
ment S false. In this case, our machine is inconsistent since it has
proved a false statement to be true.

- On the other hand, our machine certainly can’t prove S to be false,
for the minute it does, the sentence becomes true. Again, because
of the encoding, this makes statement S true. Our machine is
again inconsistent, having proved a true statement to be false.

+ Thus, if our machine is consistent, the only possibility is that it will
say nothing about statement S. But that makes Godel’s sentence
true, and thus Godel’s arithmetized version S is a correct arithme-
tic statement. So we then have an example of a correct arithmetic
fact that our machine cannot prove. This proves God- el’s first the-
orem.

Godel’s second theorem is similar, but with a slight twist. It
says that one thing a consistent axiom system (or computing ma-
chine, if you prefer) can never prove is its own consistency. That’s
a nice bit of logical irony—no consistent computing machine I de-
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sign can ever prove the statement “This machine is consistent.” In
fact, there are only two possibilities for the status of a TM
equipped to do arithmetic: Either it will be inconsistent (and thus
useless), or it will be unable to demonstrate that it is consistent.
Consider what that means for today’s mathematics. We do, in fact,
have a set of axioms we use as the basis of arithmetic. Godel’s sec-
ond theorem says that either (1) those axioms are inconsis-
tent—flawed by self-contradiction, or (2) we’ll never know that
they are not. Those are the only two possibilities.

And, of course, the only way we could ever find out which pos-
sibility actually happens is for things to go just as we don’t want!
It’s altogether within the realm of possibility that we could wake
up tomorrow to the news that someone somewhere has discov-
ered a contradiction in arithmetic, proving Possibility 1 true. This
would be disastrous. Pretty much all of mathematics rests on the
properties of the real numbers; so if arithmetic goes, the whole
castle comes down. And if mathematics crumbles, what science
would remain standing? The best we can hope for is that Possibil-
ity 2 is correct. We can’t prove it, so we have to hope for it. It's a
matter of faith!! and simple pragmatism. Mathematicians act on
the assumption that our axioms must be consistent, though
thanks to Godel, we know we can never be certain.

To summarize, then, Godel’s theorems tell us two things
about the limitations of mathematics:

- We can never discover all correct mathematical facts.

+ We can never be certain that the mathematics we are doing is free
of contradictions.

Mathematicians have grown more or less accustomed to these lim-
itations. Most of us ignore the second one, since it’s a matter of
faith, and there’s nothing much we can do about it. The first one
intrigues us because mathematicians love unsolved problems.
We’re happy that there is a never-ending supply of them.

There are many examples of conjectures in current mathe-
matics that most mathematicians believe are almost certainly true
but which seem to elude proof. Perhaps some of them are in fact
unprovable (at least with our current axioms) and, hence, are in-
stances of Godel’s first theorem. That wouldn’t bother us too
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Facts we have
already proved

Facts we may
yet prove

Facts that are true but that
Wwe can never prove

The Universe of Mathematical Proof

much. But we are prone to thinking, consciously or not, that the
unprovable facts are strange exceptions and that the ones we can
prove are the rule. After all, we only know of a few genuinely un-
provable statements, so surely (we think) there must be only a few
of them. In short, our natural tendency as human mathemati-
cians is to assume that nearly all the mathematics problems we en-
counter have solutions within the reach of human reason. But re-
member the transcendental numbers! We know of only a few, but
they are in fact the rule. The algebraic numbers are the excep-
tions! What if the Law of Mathematical Unapproachability ap-
plies to mathematical truths?

Our Place in the Universe of Truth

Consider the set of all correct mathematics theorems—the
Universe of Mathematical Truth. Once we decide on some axioms
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to use, that universe divides naturally into three parts as illus-
trated in the diagram: (1) facts for which we already have proofs,
(2) facts that have proofs we haven’t found yet, and facts (we know
they exist thanks to Godel’s first theorem) that have no proofs
from our axioms but that are nonetheless true. Might not the Law
of Mathematical Unapproachability suggest that most things in
that universe fall into the third category? Might it not be that the
“unprovable” part of the universe is in fact nearly everything, with
the other two regions making up only an insignificantly thin slice?
I don’t know if that’s correct. (Even if it is correct, that fact itself is
probably one of those unprovable statements!) I don’t even know
the best way to measure the meaning of “most” in this setting. But
I have a gut-level suspicion that something like this is what we’re
up against. In fact, I suspect that this picture holds no matter what
axioms we use. Gddel tells us that no choice of axioms will elimi-
nate the existence of unprovable truths. I suspect the natural ex-
tension holds: No choice of axioms can eliminate the predom-
inance of unprovable truths.

Now I want to consider how these ideas from mathematics
might apply to knowledge in general. I have always viewed learn-
ing in general, and mathematics in particular, as an adventure—
something akin to exploring a world. The analogy of a universe of
facts is not really an analogy to me. As a confirmed Platonist I be-
lieve in a universe of all truth—a collection of “that which is.”

And I find hints of this Platonist view reflected in LDS scrip-
ture: “Truth abideth and hath no end,” we read in Doctrine and
Covenants 88:66. More pointedly, “All truth is independent in
that sphere in which God has placed it, to act for itself, as all intel-
ligence also; otherwise there is no existence” (D&C 93:30). In
Mormon theology, truth is eternal and exists independent of our
ability to detect or derive it. It is absolute.

Given that we exist within such a Universe of Truth, how do
we go about finding our way about within it? I have viewed mathe-
matics as a vehicle I can use in exploring (part of) the Universe of
Truth. But in fact, the vehicle I call mathematics is one we all use
in our exploration. TMs and axiom systems are really just fancy
ways of describing the reasoning processes we all use. Perhaps
you don’t use the mathematical language that I do, and perhaps
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you are not interested in the more esoteric mathematical land-
forms that fascinate me in the Universe of Truth, but we all use de-
ductive reasoning as one way to reach truth, so Gédel’s theorems
caution us all that there are places this particular vehicle can
never take us. In fact, I suspect that the Universe of Truth is a wild
and rugged land, and our deduction-driven low-clearance vehicle
of conscious human thought can take us to only an insignificant
part of it.

The idea that there are truths beyond our reach would not
surprise anybody. However, most of us are probably prone to
thinking of this limitation as one of volume rather than of sub-
stance. We can readily see that there is more information out
there than our minds can possibly hold. But the mathematics we
have outlined suggests an awesome depth to the picture. There
is truth—perhaps most truth, perhaps even almost all truth—that
is of an essence and nature beyond our ability to consciously
comprehend.

What if the Law of Mathematical Unapproachability is indeed
valid and is, furthermore, only a shadow of the larger picture of
our position in the Universe of Truth? In that case, the knowledge
we are able to obtain through our conscious reasoning would be
as sparse in the true substance of truth as the computable num-
bers are sparse in the real numbers. Almost all objects in the Uni-
verse of Truth would defy description or approach by our puny in-
tellects. We might think of labeling bits of truth as either “logical”
(capable of being deduced by linear reasoning) or “beyond logic.”
If my suspicion is correct, almost everything in the Universe of
Truth fits into the “beyond logic” category, but the few scattered
“logical” bits are most of what we can see. Of course, the greatest
truths—the most precious gems in that universe—are probably of
the “beyond logic” category. (This would give new meaning to the
familiar phrase “It’s only logical.”)

All of these possibilities run counter to the common tendency
to believe in the inevitable ultimate triumph of the human intel-
lect (the same tendency that led the mathematicians in Newton’s
wake to assume that all things would become predictable through
calculus), but it runs in perfect harmony with several scriptural
themes, such as the well-.known dictum:
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My thoughts are not your thoughts, neither are your ways my
ways, saith the LORD.
For as the heavens are higher than the earth, so are my ways

higher than your ways, and my thoughts than your thoughts. (Isa.
55:8-9)

I see hints of this theme in the Pearl of Great Price account of
Moses’s vision. Moses is overwhelmed by what he sees of God’s
creations. Furthermore, God declares that “they cannot be num-
bered unto man; but they are numbered unto me, for they are
mine” (Moses 1:37) and “Here is wisdom and it remaineth in me”
(v. 31). Similar wording is found in Joseph Smith’s reaction to his
own vision of God’s kingdoms: “The mysteries of his kingdom . . .
surpass all understanding” (D&C 76:114). The book of Ecclesias-
tes grapples with the issue of our inability to gain understanding,
only to come to the less-than-satisfying conclusion that we cannot
ever understand:

All this have I proved by wisdom: I said, I will be wise; but it was
far from me.

That which is far off, and exceeding deep, who can find it out?
(Eccl. 7:23-24)

Perhaps, though, the haunting feeling of inadequacy we some-
times get—the one I associate with reading Ecclesiastes, being sur-
rounded by desert mountains, or looking into a star-filled night
sky—is also ultimately hopeful, because it tells us something about
our capacity to sense that which we cannot know. Perhaps that
sense of smallness comes from our spirit’s sense of how limited
our vision truly is.

In fact, there is reason to suspect such a spiritual ability. For
certainly God has access to the totality of the Universe of Truth.
His ways, higher than ours as the heavens are higher than the
earth, allow Him to see what we cannot. Through what means
does He do this? Although God’s ability to use reason and deduc-
tion would exceed our own (again, heaven and earth is no doubt
an apropos analogy), Gédel’s theorems place limits on what can
be obtained through any deductive process, whether that deduc-
tion is being performed by man, machine, or even God. God must
have access to truth through some greater, non-deductive means.
I suspect that our reasoning and logic are but a shadow of a
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greater spiritual sense for truth—one that we glimpse here
through our personal testimonies. Truth, independent in its
sphere, is garnered through spiritual means in greater measure
than the trickle we obtain through our linear reasoning. Indeed,
most truth is inaccessible to deduction and can only be obtained
through this greater means. Even now we can “know” far more
than we can give reason for. With God, truth simply is. It needs no
derivation. So it will be one day for us.

This possibility helps me make sense of this passage regarding
the relationship between our efforts to learn in this life and our
ability to acquire truth in the hereafter:

Whatever principle of intelligence we attain unto in this life, it
will rise with us in the resurrection.

And if a person gains more knowledge and intelligence in this
life through his diligence and obedience than another, he will have
so much the advantage in the world to come. (D&C 130:18-19)

“Intelligence,” as used in Mormon scripture, is a word that ob-
viously has profound meaning. But given its sparse explanation
there (D&C 93:29, 36), its meaning is difficult to grasp. Perhaps it
is in some way a measure of our ability to obtain truth. Or perhaps
intelligence is this greater means for truth-gathering—a means not
bound by Godel’s limitations on deductive reasoning. Perhaps it
is the very means by which God knows truth. The “principle of in-
telligence we attain unto in this life” is what will rise with us; the
next life will be a continuation of the search for truth we should
be engaged in here.

Of course, in the end, I have no firm, final answers. I can only
speculate on the meaning of what I felt that day reading Ecclesias-
tes. Those of us who work in science or mathematics develop very
rigid ideas about what “knowing” something means. I “know”
many things from the mathematics that I have studied. A continu-
ous one-to-one function from a compact topological space to a
Hausdorff topological space has a continuous inverse. I know
this, and I love knowing such things. What humans have achieved
through deduction is both beautiful and amazing to me. In a dif-
ferent way, I “know” that what I see here is only a dim shadow of
what must really be—“through a glass, darkly” as Paul puts it—but I
“know” that some day I will see it all “face to face” (1 Cor. 13:12).
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The first kind of knowing I can explain. It is that of a Turing
machine; and given enough time and paper, I could transmit this
knowing to you. Not so with the latter type. I cannot explain it
even to myself. It is unearthly and mysterious. It is the distant land
faintly visible to my spirit from here on the shoreline where con-
scious deduction ends. The gulf between here and there is, I be-
lieve, what gives our spirits such pause in those moments of this
life when we confront it.

Notes

1. Kent A. Bessey, “To Journey beyond Infinity,” BYU Studies 43, no.
4 (2004): 23-32, is an interesting discussion of the philosophical implica-
tions of infinity.

2. There is actually a subtle mathematical twist here. We would like
“equal cardinality” to mean that the two sets can be put into exact one-to-
one correspondence. But |Y| > |X]| and |X]| > |Y]| mean only that we
can put X in one-to-one correspondence with part of Y and Y in
one-to-one correspondence with part of X. Proving that these two condi-
tions imply an exact one-to-one correspondence between X and Y was
difficult enough to stump Cantor, but successful proofs were eventually
produced by several mathematicians independently.

3. Named for Alan Turing (1913-54), one of the founders of the
theory of computation, who first championed the TM concept as a
model for algorithmic processes.

4. The three-millionth digit of © after the decimal point is a 3. In
fact, digits 3,000,000 through 3,000,009 in & are 3697067915.

5. Actually, one really wouldn’t want to use this particular formula,
since it converges much too slowly to . There are other similar (but
more complicated) formulas that give much faster results.

6. Belief in this universe of mathematical objects is central to the
Platonist philosophy in mathematics. A Platonist mathematician be-
lieves that the mathematical objects he or she studies—the integers, the
real numbers, functions, shapes, and so on—actually exist, and that his or
her work as a mathematician consists of discovering the properties of
these objects. In contrast, the Formalist philosophy holds that mathe-
matics is a human invention and that mathematical terms are simply ab-
stract constructs having no real existence. Most mathematicians have a
bit of both schools in them and are quite comfortable switching back and
forth between the two outlooks as occasion requires, in much the same
way that physicists have become comfortable with thinking of light as
particle and/or wave.
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7. Ian Stewart’s Flatterland (Cambridge, Mass.: Perseus Publishing,
2001), a modern follow-up to Edwin Abbot’s classic Flatland, gives the
best description I have seen of the mathematical universe or, in his ter-
minology, “Mathiverse.” (See pp. 28-30.)

8. Though he lived two centuries before the central ideas discussed
in this paper began to emerge, Sir Isaac Newton expressed something
very like this sentiment in one of his most famous quotations. Shortly be-
fore his death, he wrote in his memoirs: “I do not know what I may ap-
pear to the world; but to myself I seem to have been only like a boy play-
ing on the seashore, and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the great ocean
of truth lay all undiscovered before me.” David Brewster, Memoirs of the
Life, Writings, and Discoveries of Sir Isaac Newton (Edinburgh, Scotland:
n.pub., 1855), vol. 2, chap. 27.

9. Though it sounds like every geometry student’s dream, it isn’t dif-
ficult to describe—in theory anyway—how such a machine would work. It
would begin by outputting all conclusions reached by “one-step
proofs”—conclusions reached by quoting one axiom. Then by beginning
with these statements and following them with each of the system’s axi-
oms in turn, it can list all of the conclusions reached by “two-step
proofs.” These would then allow easy computation of the conclusions of
“three-step proofs,” and so on. Continuing in this way, any theorem that
can be proved from the axioms would eventually be output.

10. This section follows ideas from Rudy Rucker’s excellent book, In-
finity and the Mind: The Science and Philosophy of the Infinite (Princeton,
N.J.: Princeton University Press, 1995), chap. 4.

11. Even the most ardently atheistic or agnostic mathematicians and
scientists, then, must be practitioners of the principle of faith. Without
faith in the (unprovable) consistency of our mathematics, there would
not be much point to pursuing mathematical or scientific questions.
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